

Building an integrated
desktop application

ecosystem for Finance
A guide to the tools, products and migration challenges

This paper identifies the core building blocks that are required to build an integrated desktop application
ecosystem using a combination of web and legacy technologies – an ecosystem where it is easier to deploy and
integrate both your own applications and those from third-party vendors. We look at the challenges involved in

moving from legacy desktop technologies to the fast-moving world of web technologies. And finally, we review the
various open source and commercial products that form the building blocks of this ecosystem of the future.

A white paper by Colin Eberhardt

2 Building an integrated desktop application ecosystem for Finance

Introduction 3

The desktop ecosystem of the future 4

The desktop legacy challenge 5

The building blocks of a desktop ecosystem 6

From legacy to web technologies 9

Tools and products 10

Conclusion 12

White papers by Scott Logic 13

Want to discuss how to plan your integration journey? 16

Contents

3scottlogic.com

Introduction
Financial services professionals interact with a wide range of disparate systems
throughout the course of their working day. They rely on these to provide access
to data, interact with others in the business and perform a multitude of actions
across trading, risk, sales and beyond. However, working across this heterogeneous
application estate can be a challenge, with inconsistencies in user experience and
interface quality, duplicate functionality, and manual intervention required in order
to move data between systems – all resulting in workflows that are fractured and
extremely inefficient.

While there are a number of reasons why this
burgeoning application estate is so hard to tame,
technology is a major factor. The tendency is for
many disparate internal systems to be implemented
to provide tactical solutions, but these often suffer
from a lack of investment over many years and rely on
legacy development frameworks.

Recently, we’ve seen an emerging vision for an
integrated desktop application ecosystem, with
various vendor products providing integration and
interoperability. There are also open standards
such as FDC3 which provide an agreed framework
for communicating data and actions between
applications. This vision outlines a better future, with
a connected ecosystem of applications that deliver
processes efficiently in support of user-centred
workflows. These loosely coupled applications all live
within a framework that is easy to deploy, update and
maintain.

There is broad agreement across the industry that
a key component of this vision is a move away from
legacy desktop frameworks to web technologies – a
move that we are seeing in the wider technology
community. The vision is certainly appealing; many
business-critical applications, especially those
which are not customer-facing, are built with legacy
technologies and have meagre development budgets.
However, a wholesale migration is not feasible. A
more pragmatic approach is to migrate some apps,
while retaining and integrating legacy applications
into a hybrid desktop ecosystem.

The benefits of an incremental migration towards
a hybrid ecosystem are manifold. This approach
provides the opportunity to ‘break up’ monolithic
applications and create a new enhanced desktop
experience, whilst also leveraging previous
investments by making selective decisions around
what is (and what is not) migrated, and when.

This paper identifies the core building blocks that are
required to build an integrated desktop application
ecosystem using a combination of web and legacy
technologies – an ecosystem where it is easier to
deploy and integrate both your own applications
and those from third-party vendors. We look at
the challenges involved in moving from legacy
desktop technologies to the fast-moving world of
web technologies. And finally, we review the various
open source and commercial products that form the
building blocks of this ecosystem of the future.

4 Building an integrated desktop application ecosystem for Finance

There is no doubt that these professionals require
immediate access to data, productivity tools and the
ability to transact based on a diverse range of data
sources. However, there still exist inefficiencies due
to a lack of consistency and interoperability between
the applications that occupy their desktops. Users
are faced with a heterogeneous mix of third-party
systems and bespoke applications, which they have to
mentally ‘map’ between.

So what does a better future look like?

For the user, it is one where the applications on
their desktop are task-oriented and efficient, where
interfaces surface the data a user needs and allow
them to respond rapidly; where applications speak the
same language, allowing them to seamlessly integrate
in support of bespoke user-oriented workflows that
remove repetition and re-keying of information.

The desktop ecosystem of
the future
You only have to walk the floor of any financial institution to understand the day-
to-day complexity experienced by those who work there. Whether it is risk, trading
or operations, you’ll find people sat behind walls of monitors, displaying a vast
quantity of real-time data. Even the telephones are complex and intimidating
to the uninitiated!

For the business, a better future is one supported by
a framework that allows easy deployment of tools for
both internal users and external clients; a framework
that provides the ability to integrate third-party
products into their internal workflows, removing the
need to build their own integrations. It is a future that
is ultimately free from constraints of legacy, where the
old and new live side by side.

This is a vision that isn’t far off, and is one shared
by a number of product vendors and the open source
community. However, there are a number of obstacles
in the way, the most notable being the legacy
technologies that occupy the desktop of almost
every financial institution.

scottlogic.com

However, for most businesses the internal-facing
applications – which facilitate sales, customer
relations, operations (and more) – outnumber
consumer-facing applications by at least an order
of magnitude. Despite the criticality of these
applications, they are typically developed using
traditional (and now legacy) desktop technologies.
So why are so many internal tools being left behind?

In some cases, these tools genuinely do need a level
of desktop integration that is not possible through the
browser (although as we will see later in this paper,
the capability gap is now quite small). In this case, it
is still possible to leverage web technologies via the
use of a desktop container. However, more often than
not, the reason they are left behind is simply the cost
of migration. For complex applications, a screen-by-
screen migration is a significant undertaking, which
is further exacerbated by architectural changes
that are needed to, for example, remove direct
database connections.

From a wider industry perspective, the use of web
technologies¹ for building desktop applications is
quite commonplace. The technology ecosystem
provides multi-threading, GPU-acceleration and
native execution speed – there is very little you
can’t do with web tech! Popular and widely used
productivity apps, such as Visual Studio Code, Slack,
Microsoft Teams and Spotify are all built using web
technologies. For greenfield desktop application
development, it has become the natural choice.

When using web technologies to build desktop
applications, you need to replace the browser with
some other runtime – and there are numerous options
available to you, both commercial and open source.
They also offer a range of features that go far beyond
a simple browser-replacement, easing the process of
migrating legacy applications, by providing adapters/
connectors, and delivering additional features
and value.

5

The desktop legacy challenge
Since the dawn of PCs, productivity and line-of-business applications have been
installed directly to the desktop operating system either by the user, or rolled-
out by a central IT team. However, as web browser capabilities have grown,
these applications have been replaced with HTML5/Single Page Apps (SPA)
counterparts. For consumer-facing applications this is the primary delivery
mechanism, with users enjoying immediate access (without installation) to their
business-critical applications from any device, anywhere in the world.

1 Web technologies refers to the four W3C languages (JavaScript, CSS, HTML, WebAssembly) and the extensive array of browser APIs. Some use the term HTML5 to describe these
technologies as a collective; however, that term is now quite dated.

Consumer apps Internal apps

 - Relatively small number

 - Web (and some social)

 - Easy to distribute

 - Available worldwide

 - Multiplatform

 - High budget

 - Numerous

 - Diverse tech stack

 - Often old/legacy tech (WPF, Java)

 - Desktop-only

 - Hard to distribute/update

 - Hard to maintain

 - Meagre development budget

 - Siloed applications

https://blog.whatwg.org/html-is-the-new-html5

6 Building an integrated desktop application ecosystem for Finance

Here we’ll start by looking at the simplest case, the
migration of a single desktop application to web
technologies, and use this as a way to introduce the
various concepts in a vendor-neutral setting.

A single-application migration

Legacy desktop applications, whether written in
Java or C#, using Swing, SWT, Windows Forms or
WPF, tend to have similar characteristics. They are
often monolithic (or just ‘fat’), with features having
been added progressively over a number of years,
resulting in a bloated and confusing user experience.
With consumer applications, analytics can be used to
determine which features are most useful, allowing
for prioritisation and insight-driven product decisions.
However, these metrics are rarely collected for
internal tools.

These applications often connect directly to one
or more databases, resulting in a tightly coupled
architecture where the database schema cannot be
evolved. It is these features – a bloated code-base,
a poor understanding of usage, and tight coupling –
that make these applications so hard to maintain and
evolve.

An equivalent application built with web technologies
has quite a different architecture. The most obvious
changes are in language and framework. Rather than
C# or Java, the application is built using JavaScript
(or TypeScript), while WPF (or WinForms etc.) is
exchanged for React or Angular. For a development
team that is not familiar with web development, this
technology shift is a significant challenge in itself.
Furthermore, web technologies cannot connect
directly to databases (or other internal services), and
as a result, they integrate with the back-end services
via one or more API layers. This approach yields many
more benefits beyond simply supporting a web-based
front-end; for example, it allows these APIs to become
first-class ‘services’ in their own right.

In order for this equivalent application to be
distributed as a desktop application (i.e. installed
on a user’s machine, launched through an icon and
potentially available offline), it needs to be distributed
alongside a browser-like environment. This is the
desktop container, effectively a dedicated browser
(with some special extra bells and whistles) for your
application.

A like-for-like migration replaces a ‘fat’ application
written in C#/WPF that connects to a database,
with an equivalent application written in JavaScript/
React, and a suitable API layer. However, in much
the same way that a server-side migration from
monolith to microservices (or a migration from on-
premise to cloud) gives the opportunity to rethink
and redesign, so too does the move from legacy
desktop technologies to web technologies. It gives the
opportunity to split a potentially bloated application
into multiple, smaller and more focused applications.
Furthermore, there are features of the application
that could likely be retired completely².

The building blocks of a
desktop ecosystem
Using web technologies on the desktop isn’t an all-or-nothing option. It is possible
to mix and match this approach in various configurations in support of a gradual
migration. Couple this with the wide range of vendor solutions, each with their own
features and differing terminology, and the sheer number of options becomes quite
hard to navigate.

2 Notice that Amazon explicitly details ‘Retire’ as a cloud migration option
among their 6 Rs.

.NET
Web app

API

https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/

7scottlogic.com

When splitting an application into a cluster of smaller
applications, there is a need to support inter-app
communication to allow data and events to move
seamlessly from one application to another in support
of user workflows. A desktop message bus provides
this connectivity, allowing communication between
applications (both bespoke and third party) entirely
on the client.

Alongside the ability to exchange data between
applications, it can also help to provide some level
of visual integration, where clusters of application
windows are snapped together by the user to act as a
single unit. This visual integration isn’t purely cosmetic;
if used effectively, it can improve workflows and
operational efficiency.

These techniques move beyond a like-for-like
migration, delivering a solution that is tangibly better
than the original. Users can assemble and connect
a collection of applications, creating their own
workspaces that are designed for their specific needs.

Migrating a suite of applications

When tackling the process of migrating a suite of
applications, things become progressively more
complicated. It is unlikely that you will migrate every
application at the same time. Instead, high-value
applications or functionality will tend to be migrated
first, resulting in an application estate where both
legacy and web applications co-exist. Furthermore,
it may make sense to migrate a sizeable desktop
application in ‘chunks’, following the familiar strangler
pattern for gradual migration.

Fortunately, there are several different ways
applications can be integrated, both old and new.
Furthermore, there are various techniques that can be
used to mix and match legacy and web technologies
within existing applications.

Web app Web app

API API API

Desktop message bus

Web app

Data

Data

Web app

https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html

8 Building an integrated desktop application ecosystem for Finance

Through the use of legacy adapters, it is possible
to exchange data between legacy applications
and those running within desktop containers via the
desktop message bus. Furthermore, various vendors
provide adapters for applications that are part of the
standard desktop suite, including Excel and Outlook,
or finance-specific applications such as Bloomberg
and FactSet.

It is also possible to embed web applications within
legacy applications through the use of a web view.
This is effectively a desktop container that is hosted
within another application. Creating a consistent
user experience (both visually and functionally)
in an application that mixes both legacy and web
technologies can be quite challenging. Also, notably
while it is possible to host web technologies within
legacy applications, it is not possible to do the inverse.
Web applications cannot host legacy applications.

Some vendor products allow visual integration of both
legacy and web applications, allowing users to snap
and dock a diverse range of applications in support of
their desired workflow.

With desktop applications becoming increasingly
integrated, there is a need for vendor-neutral
standards in order to accelerate adoption and build
an inclusive ecosystem. The FDC3 standard (founded
by OpenFin and operated within FINOS) defines a
common language for applications that communicate
over the desktop message bus. Their standards
are adopted by all the tool vendors, ensuring
interoperability.

Some vendors also provide various value-add services
and capabilities. Examples include an app store to
facilitate discovery and installation of applications,
and a notification centre to provide a single location
for managing notifications emitted by various
applications.

While desktop containers are the main building block
for using web technologies on the desktop, there are
a great many other tools and technologies which
ease migration. They also provide cross-application
functionality that takes a disparate collection of
siloed applications and turns them into an integrated
ecosystem.

Desktop message bus

Web app

.NET

API

Web app

.NET

Third party
systems

https://fdc3.finos.org/
https://www.finos.org/

9scottlogic.com

One of the most challenging aspects of the web
technology ecosystem is its fragmented and fluid
nature. With C# and WPF for example, you get a
fully integrated toolset that supports all aspects of
development, test, build and distribution. It is very
much a shrink-wrapped solution. In contrast, web
development involves a bewildering array of choices:
JavaScript or TypeScript? Parcel or Webpack? React
or Angular? Creating a productive development
environment that fulfils all of your development
requirements (from development, test, CI and release)
can be quite a challenge for the uninitiated.

A further challenge that often only becomes apparent
a few years after adopting web technologies is their
rate of change. There is a constant churn, with new
frameworks, tools and libraries appearing almost
every week, although pragmatism needs to be
exercised – new doesn’t necessarily mean better. A
strategy around adopting web technologies needs to
consider this churn; do you keep everything up to date,
migrating to the latest frameworks as they emerge?
Or do you create an architecture that allows different
tools and frameworks to co-exist? There are pros and
cons to each approach.

There is much that could be said about how to
tackle these challenges, but that is not the focus of
this paper. Probably the most important point to
consider is the time it takes to make this transition;
an investment in training and well-informed decision
making will certainly pay dividends.

From legacy to web
technologies
Regardless of which tool you choose as your desktop container, and whether you
adopt a message bus, or choose to support visual integration, the most significant
change you will be making is in the programming languages and tools you use to
build your applications, e.g. from C#/WPF to JavaScript/React.

10 Building an integrated desktop application ecosystem for Finance

Browser

The most obvious, yet often overlooked, vehicle for
delivering applications to your user’s desktops is the
browser itself. Core capabilities such as Web Workers,
WebGL, WebAssembly, Web Sockets and WebRTC
allow the development of complex productivity
applications that are far more than just simple data
input forms. There is also ongoing work, under Project
Fugu, to add features such as multi-monitor support,
data-sharing, Near Field Communication (NFC) and
much more.

Recently there’s been a lot of excitement about
Progressive Web Applications (PWA), a collection
of features that allow the creation of mobile
applications, using web technologies, that deliver a
native-like experience. There is also growing PWA
support with desktop browsers, allowing for off-line
applications, launched from desktop icons, without
the associated browser borders and toolbars.

Electron

Electron is a free and open source desktop container
based on Chromium, the open source ‘core’ of the
Google Chrome and Microsoft Edge browsers,
coupled with the Node.js runtime. Introduced in 2013,
it has become widely used for developing consumer-
facing desktop applications using web technologies,
including Spotify, MS Teams and Slack.

Electron applications are distributed by bundling
the desktop container with the (web) application
code, both of which are installed locally on the client
machine. This mimics the ‘traditional’ installation
experience of desktop applications and allows them
to work offline.

When writing Electron-based applications, caution
must be taken if any non-trusted content is consumed.
The introduction of Node.js APIs means that malicious
code can cause significant damage. However, these
risks are well understood and documented, with
various guides detailing the required mitigations³.

OpenFin

OpenFin was launched in 2010, by the company of
the same name, and was originally branded as a
Secure HTML5 runtime. Early versions were built on
Chromium and as well as providing basic desktop
container functionality, they provided a message bus,
legacy adapters and Windowing APIs.

A notable feature of OpenFin, when compared to
Electron, is its distribution model. End users install a
single shared runtime with applications downloaded
over HTTP in exactly the same way as browser-based
web applications. This ‘immediate’ distribution model
allows the roll-out of updates and new applications
far more rapidly than the traditional installer-based
model. In 2016 OpenFin moved to Electron, re-
implementing their distribution model on top of this
open-source codebase.

OpenFin, which has become widely adopted within
financial services, has more recently rebranded as the
Operating System for Finance, adding more features
to their product including snap and dock via their
Platform API, workspace management, notifications
(which don’t exist in Windows prior to v10) and a
system tray. More features are on their way with
OpenFin Desktop, which adds an app store and user
identity management.

Tools and products
There are a number of different products, both free and commercial, that provide
the various tools that support a desktop ecosystem (desktop container, message
bus, legacy adapters etc …). Here we give a brief overview of the various options.

3 https://www.electronjs.org/docs/tutorial/security

https://www.chromium.org/teams/web-capabilities-fugu
https://www.chromium.org/teams/web-capabilities-fugu
https://www.electronjs.org/docs/tutorial/security

11scottlogic.com

Finsemble

Finsemble was launched in 2017 by ChartIQ, a
company known for their financial charting products.
Originally, Finsemble was designed as a desktop
application framework on top of OpenFin, layering
in capabilities not available at the time – including
workspace management, customisable UI, context
sharing, event routing, storage, authentication, and
data feed management. More recent releases have
added further features such as tabbed workspaces,
tiling and an application launcher.

The core of Finsemble is centred around Workspaces,
which provides window and workspace management,
context sharing (including FDC3), global search,
themeable UI and actionable notifications. Additional
functionality is divided into three distinct categories:
Flow, which provides a suite of UI capabilities;
Connect, which provides various integration
capabilities with existing infrastructure; and Native,
which allows visual and logical integration of legacy
apps into the workspace.

In 2019, Finsemble replaced the underlying OpenFin
container and runtime with their own policy-based
security wrapper based on Electron. In 2020,
Finsemble open-sourced their Secure Electron
Adapter through FINOS.

Glue42

Glue42, by the company Tick42, was launched in
2012 with an initial focus on desktop interoperability.
The original product facilitated trading workflows,
supported by the integration of applications built
using Microsoft .NET.

In 2013, a Chromium-based desktop container was
added to the product. The features also expanded
to include a global search service, workflow
management with swimlanes, notification services,
application connectors, and various other tools for
building a desktop ecosystem. They also provide
connectors for various third-party products including
Eikon, Bloomberg and FactSet.

More recently, Glue42 has moved to an Electron-
based container. They are also acknowledging the
impact that Progressive Web Applications could have
on the desktop, with their new open-sourced product,
Glue42 Core, being based on this technology.

12 Building an integrated desktop application ecosystem for Finance

Conclusion
Managing the suite of tools which are so critical to the running of every financial
services firm is a challenge. Meeting user expectations with a heterogeneous
collection of legacy applications and a meagre development budget is an
impossible challenge.

Web technologies, whether used within the browser
or a desktop container, are the de facto choice for
application development. However, we’ve seen
throughout this paper that this is not an all-or-nothing
option. You don’t have to migrate each and every
application; instead, you can selectively migrate
individual applications (or parts of), leveraging
various open source libraries and vendor products
to knit these together into a streamlined application
ecosystem.

So how do you get started on this migration journey?
In simple terms, the first step is to form the strategy
itself – determine your level of investment, which
application(s) should and can be tackled first. In
tandem, it is very important that your teams become
fluent and comfortable in web technologies – there is
no questioning their importance for the future. Finally,
consider tools and product options that support your
strategy and vision.

13scottlogic.com

White papers by Scott Logic
You’ll find more white papers, practical guides and technical articles

on our website – please visit blog.scottlogic.com

Thinking differently

One of the greatest technology enablers of the past
decade is public cloud. The strategic importance
of this has been widely accepted by the industry;
however, the prevailing focus on the cloud as a
means to reduce costs, is overlooking its greatest
capability: agility! This paper encourages you to
think differently and see the cloud as a value driver,
providing a platform for change and a foundation
for business agility.

The journey to DevOps
Driving value in the public sector

The case for the public sector to innovate around service delivery, whilst driving
cost-savings and improving efficiency, has never been greater. This paper is written for
technology managers within such organisations, who face the significant challenge of

designing and delivering transformative digital services. It introduces the core concepts
behind DevOps, considers the unique challenges faced by the sector, and suggests

how such organisations can embrace the DevOps mindset and culture that is driving
technical innovation in some of the world’s biggest enterprises.

A white paper by Bartosz Jedrzejewski

WhitePaper-DevOpsV3.indd 1 05/03/2019 14:04

The journey to DevOps

The case for the public sector to innovate around service
delivery, whilst driving cost-savings and improving
efficiency, has never been greater. This paper is written
for technology managers within such organisations, who
face the significant challenge of designing and delivering
transformative digital services.

If you'd like a copy of these sent to your inbox,
please email colin@scottlogic.com

http://blog.scottlogic.com
https://blog.scottlogic.com/2019/04/18/cloud-as-a-value-driver.html
https://blog.scottlogic.com/2019/03/25/the-journey-to-devops.html
mailto:colin@scottlogic.com

14 Building an integrated desktop application ecosystem for Finance

Notes

15scottlogic.com

Want to discuss how to
plan your integration
journey?

At Scott Logic, we’ve supported a wide range of
clients in establishing and cultivating an integrated
desktop application ecosystem, boosting staff
productivity.

If you’d like to discuss how your organisation
can take a pragmatic, incremental approach to
creating the desktop ecosystem of the future, we’re
always happy to chat.

Please contact Colin Eberhardt on:

+44 333 101 0020

colin@scottlogic.com

February 2020 © Scott Logic Ltd. All rights reserved.

3rd Floor, 1 St James’ Gate
Newcastle upon Tyne
NE1 4AD

+44 333 101 0020
scottlogic.com

